Help Solving Proofs

If you are in Intermediate Logic and learning about proofs for the first time, or struggling through them again for the second or third time, here are some helpful suggestions for justifying steps in proofs, constructing proofs, or just getting better at proofs.

  1. Think about what a proof does. Recognize that the conclusion of a previous step becomes a proposition to use as a premise for a new step. Proofs are a series of connected arguments, conclusion of previous arguments becoming premises for new ones.
  2. If you are learning how to justify steps in proofs (that is, you are working on Exercise 14a:10-16, or 15a:1-6, or 16:11-18) and you are in the middle of a proof, ask yourself which steps you have not yet used. If you are trying to justify step 6, and the previous lines already used steps 1, 3 and 4, then you will probably use steps 2 and 5. Try reading them aloud, and listen for familiar patterns from the premises of the rules of inference.
  3. In general, find the premises you have available to you (e.g. if you’re on step 5, the available premises are from steps 1-4), read them aloud, and listen for rule patterns. In fact, get used to the patterns of the rules by reading them aloud, using something other than p’s and q’s (e.g. for Disjunctive Syllogism say to yourself, “This or that, not this, therefore that.”)
  4. Often, a proof is built around a single rule of inference or replacement, and the other steps are needed to set the premises up. For example, if you read Exercise 17a problem 7 aloud, you might recognize the modus tollens. But it takes a couple of steps to set up the second premise of the modus tollens, and one step after to fix the double negation.
  5. Later proofs often use the procedures from earlier proofs. Exercise 17a problem 9 is built around a hypothetical syllogism, but you need to modify the proposition is line 1 to turn the conjunction into a disjunction so that the middles match for the H. S. To do that, you follow the procedures you used in problems 3 and 4.
  6. f you’re stuck, consider whether the next step might use the rule of Addition or Absorption. These are the rules that are often difficult to see when you need to use them. This is why in Exercise 14a:10-16, five of the seven proofs use one of these two rules, and in Exercise 15a, half of them use one of these rules. You need the practice.
  7. If you are stuck constructing a proof, try writing down every possible conclusion you can make from the available premises, and see if any of them help.
  8. You may have struggling through the assignment, succeeded writing some proofs but needed to look at the answer key for others. That’s okay. But I would suggest that you then go back and do the assignment again without looking. Practice makes habit.
  9. If it is still hard for you, if you are still not quite getting it, don’t sweat it. Take your time. Go drink some coffee and come back. Don’t say to yourself, “Well, I don’t get this, but I’ll just go on to the next lesson.” No. The lessons build on each other. If you are worried about getting through the entire text, stop worrying about it. You don’t need to cover it all. Better to learn a small amount of material well then a large amount of material poorly.
  10. If you need specific help (you’re stuck on a proof and you don’t know what to do), ask me. I would love to help. Message me on Facebook, or post a question on my Logic Facebook page.

Think about proofs like solving a puzzle, rather than thinking of it like homework. Make it a fun challenge.


Parentheses in Conditionals

Mr. Nance,

Could you please explain how the placement of the parentheses is determined in Test 1, Form A, #12 of Intermediate Logic? My student wrote “(M ⊃ P) ⊃ ~C,” but the answer key says “M ⊃ (P ⊃ ~C).”

The original proposition is,

“If we see a movie then if we eat popcorn then we do not eat candy.”

This proposition has the overall form pq, where p is the antecedent, “We see a movie” (abbreviated M) and q is the consequent. This consequent is another complete conditional: “If we eat popcorn then we do not eat candy.” This is the (P ⊃ ~C). Because it is a complete proposition in itself, this consequent gets placed in parentheses.

It will be important later to note that propositions of the form p ⊃ (qr) are equivalent to propositions of the form (p • q) ⊃ r. The given proposition could be understood in this way. “If we see a movie and eat popcorn, then we do not eat candy.” Notice in this form, “We see a movie and eat candy” is the antecedent, and it is a complete proposition in itself, and thus gets placed in parentheses.


Shorter Truth Tables for Validity

Mr. Nance,

As I am teaching shorter truth tables for validity, I noticed that sometimes (on a valid argument) I get the contradiction in a different place than the answer key does. Is that okay, or am I making a mistake?

You are probably not making a mistake.

The shorter truth table method used on a valid argument will always result in a contradiction, but where that contradiction appears depends on the order of the propositions you work with, which can certainly vary.

For example, on Exercise 8, problem #1, the answer key shows the contradiction in two places, which happens if you find all of the truth values in the conclusion first, before going back to the premises.


But you might start by getting the truth values for S and W from the antecedent of the conclusion first, and then going directly to the premises. That would bring you to this point:STT2

Now, for the premises to be true, the consequents of each (P and F) must be true as well. That gives the contradiction in the conclusion, instead of in the premises as before:STT1

This is a perfectly legitimate answer. In the answer key, I tried to place the truth values in the positions I thought most likely for other who did the problem correctly. Typically, after making the premises true and the conclusion false, I try to start on the right side (the conclusion) and work my way left.

Here are a few more thoughts.

Shorter truth tables take some time to learn. Do not rush through them. Students need lots of examples to see how they work. Also, make sure you and they understand the concept behind them. You are assuming that the argument is invalid (by making the premises true and the conclusion false). If this assumption leads to an unavoidable contradiction, then the argument cannot be invalid, so it must be valid. But if you assume the argument is invalid and can fill out all the truth values without any contradiction, you have shown that the premises can be true and the conclusion false, i.e. you have shown it to be invalid.

Keep this in mind also: For each proposition (premise or conclusion), you must place the truth values under the main logical operator. The main logical operator is the operator in the column that would be the last to be filled out in the larger truth table. For example, consider this compound proposition:

~(p • q) ⊃ r

If this were a premise of an argument, the T would be placed under the conditional. But for the proposition

~[(p • q) ⊃ r]

the T would be placed under the negation. Working the truth values all the way out for this proposition would result in the truth values shown here:

~[(p • q) ⊃ r]
T   T T T  F  F

Feel free to comment if you have any questions.

Logic with James B Nance

Introductory Logic Prerequisite for Intermediate Logic?

It is certainly possible for a student who has not taken (or not completed) Introductory Logic to take and successfully complete Intermediate Logic. Though the Intermediate Logic text is designed as a continuation to Introductory Logic, it does not assume a mastery of the concepts in it. Almost all of the concepts from Introductory Logic that are essential for Intermediate Logic are re-taught (the only exceptions being the definitions of logical argument, premise, and conclusion; definitions assumed in Intermediate Logic, Lesson 7, but taught explicitly in Introductory Logic, Lesson 19).

That being said, a new Intermediate Logic student who is familiar with Introductory Logic will have an advantage over a student who is not. The following concepts from Introductory Logic are repeated and re-taught in Intermediate Logic (the concepts are first taught in the respective given lesson numbers): Continue reading Introductory Logic Prerequisite for Intermediate Logic?

Truth Tables for Validity

Truth tables can be used to determine the validity of propositional arguments. In a valid argument, if the premises are true, then the conclusion must be true. The truth table for a valid argument will not have any rows in which the premises are true and the conclusion is false. For example, here is a truth table of a modus tollens argument, with the final columns, showing it to be valid:


The fourth row down is the only row with true premises, and in that row it also has a true conclusion. So this argument is valid.

An argument is invalid when there is at least one row with true premises and a false conclusion, such as in this affirming the consequent truth table: Continue reading Truth Tables for Validity

King’s Grand Style

It has been maintained that Martin Luther King Jr. was the last American orator to use the grand level of style appropriately. In my rhetoric text Fitting Words, I define the grand level as that “in which the stylistic devices are intended to be dramatic, apparent, and impressive. Its purpose is not only to inform the mind and persuade the will, but to grip the emotions and heart. It is most appropriate for speeches delivered on formal occasions.”

Anyone who has listened to (or at least read) some of his speeches – especially his most famous “I Have a Dream” – is aware that MLK uses stylistic devices in a dramatic and impressive way, a way that can grip the mind and heart of his hearers.  Here are some quotes from my text which shows his skill in using the grand level of style. Continue reading King’s Grand Style

The ambiguous OR

Logic is a symbolic language. It is also a very precise language, every term well defined and unambiguous. English, on the other hand, is a somewhat ambiguous language. The same word can have multiple meanings: a pen is a writing utensil and an enclosure for livestock.

One key term in logic is the disjunction “or”. In English, the word “or” has two meanings. The first is the inclusive or, which means basically “this, or that, or both.” If someone said, “Most Bible students read the King James or the NIV,” this statement is still true for a student who reads both the King James and the NIV. The “or” includes both possibilities.

The exclusive or basically means “this or that, but not both.” This is the sense used in this classic argument for the deity of Christ: “Jesus was either God or a bad man.” If Jesus was God, then He was not a bad man. If He was a bad man, then He was not God.

Symbolic logic deals with the ambiguous “or” this way. The logical operator OR is taken in the inclusive sense. “A or B” is true if A is true, B is true, or both A and B are true. To represent the exclusive or, we use the compound proposition “A or B, but not both A and B.”

Question about Conditionals

Mr. Nance,

My student has a question on Exercise 4 number 14.  Her answer for was ~C ⊃ S instead of S ⊃ ~C. Can the statements “I will go swimming only if the water is not cold” be considered logically equivalent to “If the water is not cold, I will go swimming”?

Also, how can I explain the difference between “If the water is not cold I will go swimming” and “I will go swimming unless the water is cold”?

Thank you! Continue reading Question about Conditionals

What will I learn in Fitting Words – 2nd half?

Fitting Words: Classical Rhetoric for the Christian Student is arranged around the five canons of rhetoric: invention, arrangement, style, memory, and delivery. In the first half of this course, after laying the Christian philosophical and historical foundation of the subject, we concentrated on constructing the first two canons: invention, and arrangement (primarily the six parts of a discourse). We also studied the three artistic modes of persuasion: ethos, pathos, and logos (including the special lines of argument: forensic, political, and ceremonial oratory).

In the second half of this course, we will continue to learn about logos by constructing general lines of argument. In Unit 5 we will review the applicable parts of logic: defining terms, determining truth, employing maxims, and using inductive and deductive arguments. We will also considering the destruction of our opponents’ arguments in refutation, including identifying informal fallacies.

In Unit 6 we will learn about Style: understanding the nature of the soul, speaking with clarity and elegance, the levels of style, and figures of speech and thought. In Unit 7 we will learn the essential skills of memory and delivery.

We will continue to see examples of all of these concepts in historical and biblical speeches and other discourse. Click HERE to learn more.