Tag Archives: 256 Forms of Mood and Figure

A Brief History of Validity #2

The 19 Traditional Forms

In the first post in this series, we saw that Aristotle identified 16 valid forms of categorical syllogisms (though he formally acknowledged only the first three figures). Some thirteenth-century logicians such as William of Sherwood and Peter of Spain recognized nineteen valid forms, giving them Latin names as a mnemonic device for ease of memorizing:

Barbara, Celarent, Darii, Ferioque prioris.
Cesare, Camestres, Festino, Baroco secundae.
Tertia Darapti, Disamis, Datisi, Felapton, Bocardo, Ferison habet.
Quarta insuper addit Bramantip, Camenes, Dimaris, Fesapo, Fresison.

The vowels in each name correspond with the mood, such that “Barbara” is AAA-1, “Cesare” is EAE-2, and so on. Thus the medievals recognized these valid forms:

Figure 1: AAA, EAE, AII, EIO
Figure 2: EAE, AEE, EIO, AOO
Figure 3: AAI, IAI, AII, EAO, OAO, EIO
Figure 4: AAI, AEE, IAI, EAO, EIO

The five forms not included in this list are AAI-1, EAO-1, EAO-2, AEO-2, and AEO-4. Why were these five not included? They are the forms in which the conclusion is the subimplication of moods with all universal statements, namely AAA-1, EAE-1, EAE-2, AEE-2,  and AEE-4. Thus they were seen as “weaker” forms of the syllogisms (why bother concluding the particular “Some S is not P”when you can conclude the universal “No S is P”?).

Defending the Missing Five

Interestingly, these five omitted forms can readily be shown to be equivalent to Bramantip (AAI-4) using immediate inferences, as follows:

AAI-4 (given)
All P is M
All M is S

∴ Some S is P

AAI-1 (taking the converse of the conclusion, correcting the premise order)
All M is S
All P is M

∴ Some P is S

EAO-1 (taking the obverse of the major premise and conclusion of the AAI-1)
No M is non-S
All P is M

∴ Some P is not non-S

EAO-2 (taking the converse of the major premise of the EAO-1)
No non-S is M
All P is M

∴ Some P is not non-S

AEO-2 (From the AAI-1, take the contrapositive of the major premise, obverse of the minor premise and conclusion)
All non-S is non-M
No P is non-M

∴ Some P is not non-S

AEO-4 (From the AEO-2, take the converse of the minor premise)
All non-S is non-M
No non-M is P

∴ Some P is not non-S.

This is one practical application of the immediate inferences learned in Lesson 27 of Introductory Logic.

A Brief History of Validity #1

Which forms of categorical syllogisms are valid? Logicians have disputed the answer for centuries, a dispute that can give us insight into the meaning of validity, the central concept of formal logic. This will be the first of a few posts in which I will briefly discuss the history of syllogistic validity.

Aristotle’s 16

It all started with Aristotle, who in his Prior Analytics, Book I, chapters 4-7, detailed sixteen valid forms:

Figure 1: AAA, EAE, AII, EIO
Figure 2: EAE, AEE, EIO, AOO
Figure 3: AAI, EAO, IAI, AII, OAO, EIO
Figure 4: EAO, EIO

If you read Prior Analytics (which is no trivial task), Aristotle presents only the first three figures as figures, omitting any mention of a fourth figure. But in chapter 7 he admits in passing the forms of EAO-4 and EIO-4 as valid, saying,

If A belongs to all or some B, and B belongs to no C … it is necessary that C does not belong to some A.

It is not difficult to see why Aristotle omits AAI-1, EAO-1, AEO-2, and EAO-2. These four forms are his AAA-1, EAE-1, AEE-2, and EAE-2 with the subimplication of the conclusion. Aristotle apparently saw no need to include syllogism forms with particular conclusions when the premises could imply the universal.

Aristotle and Figure 4

It is rather more difficult to understand why Aristotle does not admit the fourth figure, though logicians have argued that it has to do with how he defines a syllogism. We learn from Bertrand Russell, in his Cambridge Essays, that

The fourth figure…was added by Aristotle’s pupil Theophrastus and does not occur in Aristotle’s work, although there is evidence that Aristotle knew of fourth-figure syllogisms.

Theophrastus apparently recognized three more valid forms of figure 4: AAI, AEE, and IAI, bringing the total to 19. These were given Latin names by medieval scholars, but that will be the topic for my next post.

Caught by my students: Errors in my fallacies!

While teaching through Exercise 25, I was challenging my students on problem 3 to identify every possible syllogism making the fallacies of Two negative premises, and negative premise and affirmative conclusion, and no other fallacies.  I had original concluded that there were 32 such forms: EEA, EEI, EOA, EOI, OEA, OEI, OOA, OOI — all four figures of each.

Suddenly one of my students said, “But don’t some of those forms make others fallacies as well?” I realized he was right, and together we followed this rabbit trail, carefully working through the question to determine that, in fact, six of these forms do make additional fallacies: EOA-1, 2 and OOA-1, 2 have an Illicit Minor, and OOA-3, OOI-3 have an Undistributed Middle. Consequently, I have corrected my previous post on this topic.

I have some truly impressive logic students!

More Answers for Exercise 25

One of the difficulties in writing a textbook like Introductory Logic is that, for most of the questions, there are often several possible correct answers. Rather than writing “Answers may vary” every time, I elected in the answer key to give a typical correct answer to each question that could have more than one possible answer.

But all the possible correct answers for Exercise 25 are worth a little more thought. In this exercise, I ask students to write schemas of syllogisms that have a given set of fallacies. If for each problem I only allow those fallacies and no others, there are a reasonably small number of identifiable answers for each problem. Here they are (for the sake of space, I gave the answers as mood & figure, rather than schema): Continue reading More Answers for Exercise 25

Counterexample challenge

Mr. Nance,

My question has to do with Lesson 24. Exercise 22 has the students do a challenge, testing the validity of all 256 forms. I understand it’s to practice counterexample. Is there another reason not to put this challenge after lesson 26 after they’ve learned all the rules? (Which I think would make it easier.) Continue reading Counterexample challenge

Why Standard Form?

Teaching students how to translate syllogisms into standard categorical form occupies several lessons in Introductory Logic. Lessons 11 and 12 explain how to translate categorical statements into standard form, which is then emphasized while learning about the Square of Opposition in Lessons 13-18. Lesson 19 teaches students how to distinguish premises and conclusions, in part so that in Lesson 20 they will understand how to identify the major and minor premises, so that they may know how to arrange a syllogism in standard order. Finally, Lessons 21 and 22 teach them how to identify the syllogism form using mood and figure. All this occurs before the students begin to learn how to determine the validity of a syllogism. Continue reading Why Standard Form?

Invalidity and truth

Mr. Nance,

I have a question on Intermediate Logic, Test 2, Form B, Problem 4. The question says: “An invalid argument can have true premises and a true conclusion, is this true or false?” The answer book says it’s true but the definition of an invalid argument would prove that statement to be false. Is there a typo or is that correct? Continue reading Invalidity and truth

Counterexample Challenge

Introductory Logic formally teaches two methods for determining the validity of a syllogism: rules of validity, and counterexamples. The rule that tells us that any AAO-4 syllogism is invalid is this: “A valid syllogism cannot have two affirmative premises and a negative conclusion.” But can we show the invalidity of AAO-4 with a counterexample? Here is the schema:

All P is M
All M is S
∴ Some S is not P

I contend that there is only one way to write a counterexample for a syllogism of that form. I challenge you to write a counterexample to AAO-4. Remember that a counterexample must be the same form, and have true premises and a false conclusion.

Good luck!

More than a switching

Mr. Nance,

Tomorrow morning I will be explaining why EIO-2 is valid but IEO-2 is invalid. The only problem is that I think both ought to be valid. I do not understand why reversing the order of the premises invalidates the syllogism, especially when the placement of the middle term remains the same. Thank you in advance. Continue reading More than a switching